
Page 1

Federal Reserve Common Output Format
Version 1.1

10 January 1997

Federal Reserve
Image Export Standards Work Group

comments to:

Rich Puttin, chair
Federal Reserve Bank of Minneapolis
612 340-6944
rich.puttin@frbmpls.sprint.com

Lou Sharpe, editor
Picture Elements, Inc.
303 444-6767
lsharpe@picturel.com

The current version of this document, along with any revisions, errata or related materials, may
be obtained from:

http://www.bos.frb.org/genpubs/techstds/COF/

1. Summary
This is Version 1.1 of the Common Output Format (COF) for export of images and associated
financial data from multi-vendor Federal Reserve archives to financial institutions.

Effective in early 1997, all check images exported from image systems located at Federal
Reserve Offices will be in a newly developed standard format which has been called the
Common Output Format or COF. The COF has been designed to standardize the export of
image data regardless of what type of hardware/software was used to capture and store the
images. By adapting their software to understand the COF, vendors can be assured that data
coming from any Fed office on media will be useable when received. Financial institutions that
use Fed Image Export Services and receive CD-ROM or magnetic tape media will need to work
with their software vendors to ensure that their software can understand COF.

In COF, the Images File supports multiple types of image compression (T.6, JPEG, ABIC gray,
and ABIC binary) as well as multiple image file formats (TIFF and IOCA). On CD-ROM media,
identification and financial information about each check is carried in the Data File, along with the
offset of the item’s corresponding images in the Images File. Index files have also been included
on CD-ROM media to make access to images more efficient. COF interchanges on tape media
incorporate Images Files of the same format, but include neither Data Files nor Index Files.

COF is not a Federal Reserve proprietary format and can be used for delivery of image data
outside the Federal Reserve System if desired.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 2

2. Contents

1. SUMMARY ..1

2. CONTENTS...2

3. INTRODUCTION...3

4. DESIGN CRITERIA...4

4.1 MIGRATION TO NETWORK USAGE ...4
4.2 EFFICIENCIES ..5
4.3 USABLE WITHOUT IMPORT ...5
4.4 CROSS-VOLUME SEARCHING ...5
4.5 USE OF TOOLS ..5

5. RELATIONSHIP TO ANSI X9.46 FINANCIAL IMAGE INTERCHANGE STANDARD.......5

6. TERMINOLOGY..6

7. COMPLIANCE...7

7.1 REQUIREMENTS ON WRITERS ...7
7.2 REQUIREMENTS ON READERS ..7
7.3 REQUIREMENTS ON MEDIA ...7
7.4 LIKELY AREAS OF CHANGE ...8

8. OVERALL STRUCTURE..8

8.1 FILE NAMING ...8
8.2 OPTIONAL FILES..9
8.3 FILE SUITES ..9

8.3.1 Format of .ini Files ...10
8.3.2 File Suite Header Structure..11
8.3.3 File Suite Trailer Structure ...11

8.4 MEDIA SETS ...12

9. MEDIA HEADER FILE STRUCTURE...13

10. MEDIA TRAILER FILE STRUCTURE..13

11. DATA FILE STRUCTURE...14

11.1 DETAILED STRUCTURE OF THE DATA FILE ...15
11.1.1 Data File Fields ..15
11.1.2 dBASE III Compatible DBF File Format...17

12. INDEX FILES STRUCTURE...20

12.1 DETAILED STRUCTURE OF INDEX FILES ...20

13. IMAGES FILE STRUCTURE..23

13.1 SUPPORTED IMAGE COMPRESSION TYPES ..23
13.2 SUPPORTED IMAGE FILE TYPES ..23
13.3 AGGREGATION METHOD ...23

13.3.1 Relation to X9.46 Approach ...23

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 3

13.4 DETAILED IMAGES FILE STRUCTURE ...24
13.4.1 ItemData in Images Files ...26

13.5 DETAILED TIFF FILE STRUCTURE ...27
13.5.1 General Notes on TIFF Tags ...27
13.5.2 Group 4 Compressed Binary Files ...27

13.5.2.1 Notes Regarding the Group 4 Image Tags28
13.5.3 JPEG Files ...29

13.5.3.1 Notes Regarding the JPEG TIFF Tags31
13.6 DETAILED IOCA FILE STRUCTURE ..32

13.6.1 ABIC Compressed Binary Files..32
13.6.2 ABIC Compressed Grayscale Files..34

13.7 FINANCIAL DATA IN IMAGE FILES...36

14. PHYSICAL MEDIA TYPES...37

14.1 PHYSICAL LABELING REQUIREMENTS ..37
14.2 MEDIA-SPECIFIC ISSUES : CD-ROM...37
14.3 MEDIA-SPECIFIC ISSUES : TAPE ...38

14.3.1 Tape Media Types ...38
14.3.2 Physical Labeling Requirements..38
14.3.3 Media-Specific Issues: Tape...38
14.3.4 Tape Logical Formatting ..38
14.3.5 Required Files and File Ordering ...43
14.3.6 Media-Specific Issues: Tape, DLT™...44

14.3.6.1 DLT1................................44
14.3.6.2 DLT2................................44
14.3.6.3 DLT3................................44
14.3.6.4 DLT4................................45
14.3.6.5 DLT5................................45

14.3.7 Media-Specific Issues: Tape, 3480-Compatible..45
14.3.7.1 348045
14.3.7.2 349045
14.3.7.3 3490E 45

14.3.8 Media-Specific Issues: Tape, 8mm Helical-Scan..46

15. REFERENCES ..46

16. REVISION HISTORY...46

17. ANNEX A (NORMATIVE). DBF FILE FORMAT...47

3. Introduction
This image delivery standard has been developed by a working group within the Federal
Reserve. This Image Export Standards Working Group is made up of current image system
implementors from multiple Fed districts who are working with archive products from a variety of
vendors. Much careful deliberation has gone into this effort.

The goal of the image delivery standard is to provide a uniform Common Output Format (COF)
for delivery of images out of the image archive systems of the various districts to the Fed’s
customer institutions. This goal falls far short of developing a general purpose interchange
vehicle for any-to-any interchange; such a need is already well served by the full-featured, robust
and complicated ANSI X9.46 Financial Image Interchange Standard (FIIS).

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 4

The current situation is that different Federal Reserve districts use different vendors’ products to
deliver images on CD-ROM or magnetic tape to client institutions. These all currently have
different formats. The goal of the working group was to quickly produce a common format for
image delivery on these media which did not differ too significantly from the current approaches
of these vendors, yet showed leadership in moving the delivery philosophies of these products
toward the approach envisioned in the FIIS.

Clearly, thinking will be changing radically over the next few years about how and where images
will be archived and delivered and the FIIS will be part of that. Once the ability of the system to
capture good images and safely archive them with a responsive retrieval system has been
established in the public mind, and once networking technology makes access of remote archives
a common occurrence, the complicated and robust FIIS architecture will really begin to shine. At
that point it will not be necessary to perform bulk delivery of images to banks. People will not
need image statements (to store and lose), since they know they can get instant on-line access
to all their archived checks.

The bulk delivery of images on media is a simple, interim application which calls for a simple,
lightweight solution which can be developed and deployed in a short time frame. The transition to
use of the FIIS would best occur during the shift away from bulk delivery and toward networked,
remote archives.

Accordingly, the COF does not use FIIS. It does, however take several steps in the direction of
the philosophies embodied in FIIS, in order to smooth that later transition. For example:

1. COF supports multiple image compression types (T.6, JPEG and ABIC) and multiple
embedded file formats (TIFF and IOCA) as does FIIS.

2. COF combines multiple images into a single storage-efficient file in a manner
consistent with the approach taken in the FIIS -- by use of concatenation of separate
image files rather than by use of a single multi-page TIFF file. The structure of the
resulting Images File mirrors the structure and terminology of the corresponding
X9.46 transaction set, without using the X.12 EDI syntax.

3. On CD-ROM media, COF keeps a copy of the financial data separately bundled (in a
Data File) from the image data (in the Images File), just as FIIS keeps these items in
separate transaction sets.

4. The fields of the Data File are those found in X9.37, just as they are in FIIS.

In summary, this working group believes that the Common Output Format meets its stated goals,
can be deployed expeditiously to solve a currently pressing problem and also provides leadership
toward migration to the next generation in check image systems and eventual wide
implementation of the FIIS by the financial system.

4. Design Criteria
The criteria discussed in the sections below affected design decisions in creating the Common
Output Format.

4.1 Migration to Network Usage
It is expected that the eventual architecture for export of images from the Federal Reserve
archive will use network interchange rather than media.

The most efficient such network architecture would allow queries requesting images from a bank
by its customers to be relayed to the Federal Reserve archive. Only then (for the tiny percentage
of images actually needed), would the images of an item be relayed to a bank for transmittal to a
customer. This presumes a post-Image Statement Print environment.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 5

In this document, reference is made to files on media. It is recognized that before network
transfer can occur, an additional transport specification will be required which permits
identification and request of individual items and specifies the bundling of multiple items into a
unitized transfer. It seems clear that the ANSI X9.46 standard would be the most appropriate
choice for any network transfer (see Section 5, Relationship to ANSI X9.46, below).

4.2 Efficiencies

1. The COF should be reasonably time efficient to write and to read.
2. The COF should be reasonably efficient in its use of the available storage space on

the delivery medium.
3. For random access media (CD-ROM), the COF should support quick search and

retrieval times so it can be used as the sole storage copy by the end recipient.

4.3 Usable Without Import
In a sense, the COF format is intended to permit a copy of a portion of the Federal Reserve
archive to be distributed outside the walls of the Fed (at least for CD-ROM media). In that sense,
it is less an interchange than a means for a financial institution to access its own items without
networked retrieval from a centralized Fed archive. Tape, on the other hand, is intended as an
interchange means where import into a local imaging system occurs at the receiving institution.

The COF therefore should represent an open archival format which can be retained for future
reference, and searched against directly. It should not require bulk import at the financial
institution onto other media in order to be useful (while not precluding such importing).

For ease of cross-volume searching, a financial institution may choose to import the Data Files
(as opposed to the Images Files) into a larger, primary database. The large Images Files,
however, may be retained directly on the originally delivered media in the user’s archive as the
primary image storage medium without additional expense.

Given a well-identified date range, however, individual media may be searched directly without
any importing process. This supports the familiar microfilm reference model and minimizes costs
for smaller institutions.

4.4 Cross-Volume Searching
The COF should enable use of search capabilities across multiple COF volumes when they are
used as the sole storage copies by the end recipient.

4.5 Use of Tools
The COF should support the use of readily available tools for searching and viewing. Ideally, the
option should exist of placing some format verification tools on the delivery media.

5. Relationship to ANSI X9.46 Financial Image Interchange Standard
The Common Output Format is not intended to replace ANSI X9.46, which the Federal Reserve
endorses. X9.46 Financial Image Interchange Standard (FIIS) is a general-purpose check image
standard for interchanges between any two financial institutions. It incorporates a very robust
and complex framework for queries to and for acknowledgments and retrievals from remote
archives. FIIS supports a variety of applications including forward presentment, return item
processing and check safekeeping, among others. While the FIIS may be used for bulk delivery
of images, its complex architecture anticipates a much richer set of relationships between

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 6

financial institutions and provides mechanisms to support them. This complexity begins to pay
off in a multi-party, remote archiving environment.

The Common Output Format is a much simpler means of delivering media from the Federal
Reserve to its client financial institutions. These media are directly usable as a local archive copy
at those institutions. A FIIS interchange is very much a sequential data stream, the use of which
carries the expectation that a processing center at the receiving institution will parse the stream,
manipulate the data and store it into a local, full-featured image system and database. The COF,
through its inclusion of immediately usable DBF and index files, requires only a PC-class
database; this database can immediately support informal reference searches against the COF
media without an initial digestion process.

With the FIIS, there can be no naive users. To take on FIIS, a financial institution must make a
major corporate commitment, purchase an in-house image management system, develop
software, and create business and technical agreements with potential interchange partners.
The COF, on the other hand, by virtue of its simplicity, supports casual use, is easily
implemented and still provides a migration path toward a full FIIS implementation as the financial
system moves toward a remote archiving approach.

6. Terminology

1. Item. A representation of a single physical object, such as a check. A single item
corresponds to a row in a Data File.

2. Data Files. These are the DBF format database files which contain all the financial,
processing and other non-image data for one or more items.

3. Index Files. These are a set of NDX format database index files associated with a
Data File which permit faster searching of that Data File.

4. Images Files. These are the files which contain all the image data (as well as all
the financial, processing and other non-image data) for one or more items.

5. Data Element. This is an attribute or field having a distinct value for each of the
items in a Data File. It corresponds to a column within a Data File or database table.

6. Field. Synonym for Data Element.
7. File Suite. A collection of related files for a group of items. A mechanism used to

limit the size of Images Files.
8. File Suite Header. A file containing descriptive information about the files in a File

Suite.
9. File Suite Trailer. A file containing verification information about the files in a File

Suite.
10. Media Header. A file containing descriptive information about the File Suites on a

piece of media.
11. Media Trailer. A file containing verification and descriptive information about the

File Suites on a piece of media.
12. Media Set. Multiple pieces of media serving the function of a single piece of media,

which would otherwise be hindered by a size limitation.
13. Writer. A program which creates a set of COF files.
14. Reader. A program which reads and interprets a set of COF files. This may

constitute a portion of a financial institution’s archive program or it may be a bulk
import utility ancillary to the financial institution’s archive program. Another example
of a reader would be a PC-based program which interprets the COF format, permits
selection of items by search criteria and which then invokes an integral or separate
viewing routine to display the images of an item.

15. Viewer. A program which parses a COF Images File and decompresses and
displays an individual (TIFF or IOCA) image. Alternatively, a COF reader might

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 7

parse the Images File and then pass the data for an individual (TIFF or IOCA) image
to the viewer through a memory buffer or hard disk file. It may be appropriate to
allow multiple viewers (each appropriate to a different image file format and image
compression algorithm) to be invoked from within a COF reader.

7. Compliance
The description “COF version X.Y compliant” is to be applied to

• COF writing programs (“writers”)
• COF reading programs (“readers”) and
• COF media

only as described in this section.

A version number is to always be used in such a description to avoid confusion.

A version number comprises two parts:
• a major version number (the number “X” in version X.Y)and
• a minor version number (the number “Y” in version X.Y).

Minor version number changes are those deemed unlikely to cause difficulties for reading
programs having a lower minor version number but the same major version number, providing
such reading programs are written to anticipate likely areas of change (see below).

Changes in the major version number are used to indicate fundamental changes in the format
likely to cause difficulties for reading programs having a lower major version number.

7.1 Requirements on Writers
Writers which are listed as “COF version X.Y compliant” shall have a default behavior of creating
“COF version X.Y compliant” media. They may also create COF media having lower version
numbers (both major and minor) in response to a specific request from a financial institution for
such media.

While a specific installation of a writing system may not be capable of writing all media types, the
writer application and operating system shall be capable of creating any of the media types listed
in the COF version by simple installation and configuration of the appropriate tape drive or CD-
ROM writer and their associated hardware. The writer application shall be capable of creating
both the CD-ROM and tape variants of the COF logical format.

7.2 Requirements on Readers
Readers which are listed as “COF version X.Y compliant” shall properly interpret a piece of COF-
compliant media having the major version number X and a minor version number less than or
equal to Y.

Proper design of a reader (in anticipation of likely areas of change, see below) should make it
possible for it to fully read and partially interpret a piece of COF-compliant media having the
major version number X and a minor version number greater than Y.

7.3 Requirements on Media
Media described as “COF version X.Y compliant” shall meet all requirements of the X.Y version
of this standard, including media type and physical labeling.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 8

In the absence of a media preference among the allowed media types by the generating Federal
Reserve or by the receiving financial institution, the recommended media types are CD-ROM
and/or DLT™ 20 Gigabyte tape.

7.4 Likely Areas of Change
Likely areas of change in future revisions of the COF include:

• added or removed database fields in the Data Files
• added fields in the Images Files, such as new View parameters
• added parameters in the various header and trailer files
• added image compression types or file formats
• added media types, with regard to physical dimensions, capacity and encoding

methods
• dropped media types

8. Overall Structure
A COF-compliant piece of media contains several kinds of files:

• one Media Header File,
• one or multiple File Suites,
• optional files (see restrictions in Section 8.2, Optional Files), and
• one Media Trailer File

Regardless of the media type, the logical formatting of the data is identical with the following
exception: the File Suites of COF-compliant tapes do not contain Data Files or their associated
Index Files.

8.1 File Naming
On operating systems where upper-case and lower-case file names are distinguished, the
required filenames may use either upper-case or lower-case.

The Media Header File will be named HEADER.TXT.

The Media Trailer File will be named TRAILER.TXT.

Each Data File will be named COFxxxxx.DBF, where xxxxx is an ASCII string representing a 5-
digit decimal number having leading zeroes. This number may be between 00001 and 99999,
inclusive. The first Data File on a set of media will be named COF00001.DBF (where the string
“COF” uses the ASCII letter “Oh”, not the numeral zero). Note that Data Files do not appear on
tape media.

Each Images File will be named COFxxxxx.IMG, where xxxxx is an ASCII string representing a
5-digit decimal number having leading zeroes. This number may be between 00001 and 99999,
inclusive. The first Images File on a set of media will be named COF00001.IMG (where the
string “COF” uses the ASCII letter “Oh”, not the numeral zero).

A Data File and its corresponding Images File will have file names whose numerical components
are equal, for example COF00001.DBF and COF00001.IMG. Note that Data Files do not appear
on tape media.

For a discussion of the naming of the other files in a File Suite, please see Section 8.3, File
Suites.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 9

The set of Index Files corresponding to any one Data File are named as described in Section
12, Index Files Structure. Note that Index Files do not appear on tape media.

The numbering of the files in File Suites continues across the various pieces of media in a set of
media. For example, if the last Data File on the first piece of media is COF00006.DBF
(contained in the sixth File Suite), the first Data File on the second piece of media in the media
set will be COF00007.DBF (contained in the seventh File Suite).

For naming of optional files, see the next section.

8.2 Optional Files
No optional files will be placed on media generated by systems within the Federal Reserve.

It is recognized that commercial uses of the Common Output Format may wish to introduce
extensions to it, for instance to transmit additional fields describing items. The restrictions in this
section govern what extensions may be introduced as optional files for commercial uses while still
remaining COF compliant.

Optional, non-standard files may be included, but a writer is cautioned that a reader may be likely
to ignore such files.

Optional files may have any name which does not conflict with the other file names, subject to the
requirements of this section. Any optional files shall have file names which are unique across the
Media Set of which they are a part.

An example of a useful optional file might be a database program for searching or verifying the
correct format of the Data Files. Note that Data Files do not appear on tape media.

Another example would be a program which accepts an offset into the Images File from the
database program and extracts a standard individual image file to the local hard disk.

Yet another useful optional file might be one or more viewing programs for viewing standard
individual image files which have been extracted from the Images File.

Optional files containing item data are required to use the DBF file format and any associated
index files must be in the NDX index file format (if index files are used). This ensures that
receiving applications from other vendors will be able to use the information. If any optional files
are placed on the media, a file called OPTIONAL.TXT must be included on that same piece of
media which will describe in English prose all optional files placed on that piece of media. This
will describe the uses of any such optional item data fields placed in any optional DBF or NDX
file. The naming of such files shall mirror the naming of the other, required files in the same File
Suite, i.e. their names will incorporate the same 5 digit number string used in the required files of
that File Suite.

If any optional executable programs have been placed on the media, the environment required by
those programs will be described in the OPTIONAL.TXT file of that piece of media along with
basic instructions for invoking the program. It is recommended that such optional executable
programs be placed on the first of or on all of the pieces of media in a media set.

8.3 File Suites
A single piece of media may carry multiple File Suites of Images Files, Data Files and their
associated Index Files (for CD-ROM media) and Header and Trailer files. For example, a piece

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 10

of media containing three File Suites would have the following files in addition to the Media
Header and Media Trailer files.

* Not present on tape media.

On CD-ROM media, each Data File has associated with it a set of Index Files with related
numbering. See Section 12, Index Files Structure.

The Media Header File identifies all the File Suites that are present on a given piece of media.
See Section 9, Media Header File Structure.

The multiple File Suite mechanism allows the building of the Images Files before the target media
has been chosen. Choosing an Images File size which is large enough to be media-efficient but
not too large allows the multiple File Suites from a day’s work to be placed on, say, either nine
CD-ROMs or two 8mm tapes, without re-running the formatting step.

It is recommended that a single File Suite not be larger than can fit on a CD-ROM, even when
using other, larger media. It is recommended that vendors of COF writing systems parameterize
the size under which File Suites are kept in order to adjust its value to suit different applications.

It is recommended that File Suites not be made excessively small, resulting in too many File
Suites on a single CD-ROM. Some operating systems have difficulty dealing with large numbers
of files (100 to 1000) in a single directory.

8.3.1 Format of .ini Files
Several of the files included in the COF use the format of Window 3.1 .ini files, for which simple
and flexible Windows 3.1 and Windows 95 programming functions exist (GetPrivateProfileInt,
GetPrivateProfileString).

The information in this section is largely drawn from the winini.wri file found in the windows
directory of a Windows 3.1 installation.

The .ini files contain several sections, each of which consists of a group of related settings. The
sections and settings are listed in the file in the following format:

[SectionName]
KeyName=value

In this example, [SectionName] is the name of a section. The enclosing brackets ([]) are
required, and the left bracket must be in the leftmost column.

The ordering of sections and of keynames within sections does not matter in such files. Blank
lines are permitted anywhere.

The KeyName=value statement defines the value of each setting. A keyname is the name of a
setting. It can consist of any combination of letters and digits in uppercase or lowercase, and it
must be followed immediately by an equal sign (=) with no spaces. The value can be an integer,
a string, or a quoted string, depending on the setting.

Header Files Data Files * Images Files Index Files * Trailer Files
HDR00001.TXT COF00001.DBF COF00001.IMG several TRL00001.TXT
HDR00002.TXT COF00002.DBF COF00002.IMG several TRL00002.TXT
HDR00003.TXT COF00003.DBF COF00003.IMG several TRL00003.TXT

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 11

Optional or non-applicable keynames may have the form
KeyName=

or be absent entirely.

Note the capitalization of and the lack of spaces within the parameter names.

Comments may be included in initialization files. Each line of a comment must begin with a
semicolon (;) in column one.

Numbers are decimal values unless a “0x” (zero, lower-case x) prefix is used, which indicates a
hexadecimal number.

When reading either floating point values such as the COFVersion= or arrays of values such as
FileSuiteCheckSums=, readers are cautioned to read these using the GetPrivateProfileString
function rather than the GetPrivateProfileInt function and to parse them properly from the
returned string.

8.3.2 File Suite Header Structure
The File Suite Header for a given file will be named HDRxxxxx.TXT, with xxxxx corresponding to
the five digit number used in the file names of the other files in the File Suite.

The File Suite Header File contains summary information relating to all of the other files within the
File Suite. Its structure mimics that of Windows 3.1 “.ini” files. See Section 8.3.1, Format of .ini
Files for the requirements of this format.

[FileSuiteInfo]

FileSuiteNumber=6
FileSuiteDescription=Any text up until the first carriage return. [optional field]

8.3.3 File Suite Trailer Structure
The File Suite Trailer for a given file will be named TRLxxxxx.TXT, with xxxxx corresponding to
the number used in the file names of the other files in the File Suite.

The File Suite Trailer File contains summary information relating to all of the other files within the
File Suite. Its structure mimics that of Windows 3.1 “.ini” files. See Section 8.3.1, Format of .ini
Files for the requirements of this format.

[FileSuiteInfo]

FileSuiteNumber=6

[FileSuiteVerificationInfo]

; In the parameters that follow, byte counts are in decimal and
; checksums are in hexadecimal

; The next two parameters are absent, blank or zero on a tape
;
DataFileBytes=12345
DataFileCheckSum=0xAB45

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 12

ImagesFileBytes=12345
ImagesFileCheckSum=0x4574

; All of the following Index File related parameters are absent, blank or zero on a tape
;
PRDIndexFileBytes=12345
PRDIndexFileCheckSum=0x2784

RTNIndexFileBytes=12345
RTNIndexFileCheckSum=0x4578

ACTIndexFileBytes=12345
ACTIndexFileCheckSum=0xB578

CKNIndexFileBytes=12345
CKNIndexFileCheckSum=0xA784

PRCIndexFileBytes=12345
PRCIndexFileCheckSum=0x2784

CKAIndexFileBytes=12345
CKAIndexFileCheckSum=0x2784

ISNndexFileBytes=12345
ISNIndexFileCheckSum=0x5784

The checksums are created by summing the contents of all of the bytes in each described file
into a single 32 bit number for that file, with carries out of the 32 bits thrown away.

8.4 Media Sets
Multiple pieces of media constituting a single delivery may be associated into a larger entity
called a Media Set. Typically this mechanism would be used to place a large number of items
for a given period (often a day) for a given customer onto multiple pieces of media, while still
indicating their related nature.

This mechanism, along with the multiple File Suites mechanism (see Section 8.3, File Suites)
facilitates flexible targeting of a large day’s work onto either a (large) tape or multiple (smaller)
CD-ROMs which are associated as a Media Set.

Multiple tapes may also constitute a Media Set. This method of associating multiple tapes is
simpler and more reliable than tape label based schemes for writing across multiple tapes.

Adhesive labels carry information (“Media Set Info:”) which indicates an individual piece of
media’s relationship to its Media Set (for example, “2 of 4”). See Section 14.1, Physical Labeling
Requirements.

The files placed on CD-ROM and tape media are identical, with the exception that tape media do
not contain Data Files or Index Files; nor do they include parameters within their header or trailer
files associated with the Data Files and Index Files.

The Media Header File also carries information about the set relationship in electronic form. See
Section 9, Media Header File Structure. The Media Trailer also contains information about the
Media Set. See Section 10, Media Trailer File Structure.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 13

While there exists a relationship among those media which are members of the same Media Set
(they all come from the same period’s work and are destined for the same bank), each piece of
media stands alone in that each piece of media has a one-to-one correspondence between its
contained images and the items in its Data Files. (Note that tape media do not include Data
Files.) No Data File item refers to an image on another piece of media, nor is any individual
image on a given piece of media referred to by a Data File on another piece of media.

9. Media Header File Structure

The Media Header File contains summary information relating to all of the other files found on the
media. Its structure mimics that of Windows 3.1 “.ini” files. See Section 8.3.1, Format of .ini
Files for the requirements of this format.

The Media Header File is named HEADER.TXT.

[General]

Date=19960430
From=FRB Boston
To=Bank of Erehwon
COFVersion=1.1

[FileSuitesInfo]

NumberOfFileSuites=3
; this identifies the number of file suites on this piece of media
FirstFileSuiteNumber=7
LastFileSuiteNumber=9

[ImageTypeInfo]
; this section warns a reader what image types may be present on the piece of media
ContainsIOCAGray=no
ContainsIOCABinary=yes
ContainsTIFFJPEG=yes
ContainsTIFFG4=no

[MediaSetInfo]

MediaSetMemberNumber=2
; this identifies which number this piece of media is within the media set.

10. Media Trailer File Structure
The Media Trailer File contains summary information relating to all of the other files found on the
media. Its structure mimics that of Windows 3.1 “.ini” files. See Section 8.3.1, Format of .ini
Files for the requirements of this format.

The Media Trailer File is named TRAILER.TXT.

[MediaVerificationInfo]

NumberOfFileSuites=3

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 14

; checksums are in hexadecimal
FileSuiteCheckSums=0x1234, 0x7E93, 0x3A6B

; byte counts are in decimal
FileSuiteByteCounts=4323479, 123485, 348765

[MediaSetInfo]
LastMemberInMediaSet=yes

Each FileSuiteCheckSum is created by summing the checksums for each of the individual files in
the File Suite (including the File Suite Header File and File Suite Trailer File) into a single 32 bit
number for the entire File Suite, with carries out of the 32 bits thrown away. The checksums for
the individual files are created as described in Section 8.3.3, File Suite Trailer Structure.

11. Data File Structure
Each Data File has the same structure. The Data File structure described in this section applies
only to CD-ROM media.

Data files occur only on CD-ROM media, not on tape media. The financial information
associated with an individual item is also placed, in the form of a flat-file row of text, into the
Images File along with each item. This provides a second means to access the same data on a
CD-ROM and the only means for a piece tape media. A separate Data File is not useful on a
sequential medium like tape.

A COF Data File complies with the somewhat fluid industry-standard format for PC-based
databases known as DBF (Data Base Format).

The DBF format was originally defined by Ashton Tate (now part of Borland International) for use
by its dBASE family of products. Many vendors have built products using the so-called xBASE
programming language and use variants of a DBF file as their native database file format.

Many database or database toolkit vendors have introduced proprietary extensions to the DBF
file format and their claims about producing industry-standard output are to be taken with caution.
In addition, such toolkits may not produce the appropriate version of DBF file required by this
standard.

An ANSI committee has attempted to standardize both the xBASE language and the DBF file
format, but has not completed its work. The closest we have found to a DBF format standard is
the document attached as Appendix A. It documents the formats used in succeeding
generations of the dBASE products.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 15

11.1 Detailed Structure of the Data File
Each piece of CD-ROM media will contain at least one Data File. Each Data File will exist in a
one-to-one correspondence with an Images File.

All Data Files will be compliant with the DBF file format used by the dBASE III and dBASE III
PLUS products originally produced by Ashton Tate. DBF files shall be formatted as documented
in this section.

NOTE TO IMPLEMENTORS: Implementors are cautioned that libraries or tools which
are specified as capable of producing “DBF files” may not in fact produce dBASE III
compatible DBF files; many database and database tools vendors have introduced
variations on the DBF format which are incompatible. This burden falls primarily on
vendors of COF generating (writing) software; it is expected that most tools will properly
read this flavor of “DBF file”, since it is the most generic and best documented of the
flavors.

11.1.1 Data File Fields
The Data File incorporates the fields identified in the following table with the indicated ordering,
field names, types and lengths.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 16

Table 1. Fields of the Data File

Common Name X9.37
Field
Length,
Type

DBF File
Field
Name

DBF File
Field Length,
Type,
Indexed?

Definition

Item Sequence Number
(Document Identification
Number)

15, NB ItmSeqNum 15, N, yes
(Note 1)

A number assigned by the MICR capture system. May also
be the same as the microfilm sequence number (Note 2).

Capture Site Indicator 9, N CaptSite 9, N, no The identifier of the site that captures the images (Note 3).
Process Date 8, N ProcDate D, implicit, yes The year, month, and day the MICR file is captured

(YYYYMMDD).
Capture Date 8, N CaptDate D, implicit, no The year, month, and day the image is captured

(YYYYMMDD).
Routing and Transit
Number

9, N RoutTrNum 9, N, yes The number that identifies the institution by or through which
the item is payable (Note 4).

Account Number 17, N AcctNum 17, N, yes Data specified by the payor bank. Sometimes called On-Us.
Data usually consists of payor’s account number, a serial
number or transaction code, or both (Note 5).

Check Number 6, N CheckNum 6, N, yes Check number (Note 6).
Process Control 6, N ProcCtrl 6, N, yes Process Control (Note 6).
Aux On US 15,

NBSM
AuxOnUs 15, C, no

(Note 7)
A code used on commercial checks at the discretion of the
payor bank (Note 8).

EPC 1, N EPC 1, N, no A code used for special purpose as authorized by the
Accredited Standards Committee X9. Sometimes known as
position 44 (Note 9).

Amount 10, N CheckAmt 10, N, yes
(Note 10)

The US dollar value of the check expressed in cents (Note
11).

Item Offset in Images File 20, N ItmImgOff 20, N A number representing the number of bytes from the
beginning of the Images File to the beginning of the item’s
section of the Images File (Note 12).

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 17

Table Notes

Note 1: The X9.37 data type NB means “numeric blank”, or characters from the set {0,
1, 2, 3, 4, 5, 6, 7, 8, 9, blank}. The COF standard does not permit embedded blanks in a
numeric field such as this one.
Note 2: The Item Sequence Number comes from either the on-us file transmitted from
the bank or it uses the image sequence number provided by the image system if a high-
speed sorter sequence number is not available.
Note 3: Typically the routing/transit number of the originating institution.
Note 4: The 8-digit routing/transit number plus check digit from positions 34-42 of the
MICR line.
Note 5: Usually from positions 16-32 on the MICR line.
Note 6: The Check Number and Process Control fields may replicate the same
information or one of them may be zero. This 6-digit field is usually taken from positions
13-18 of the MICR line. Typically, this on-us field contains the check number which
usually is positioned between the amount and account number field delimiters.
Note 7: The X9.37 data type NBSM means “numeric blank special MICR”, or characters
from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, blank, asterisk, dash }. The special symbols are
used in the following way:

asterisk represents a MICR character which could not be read.
dash represents the MICR symbol ‘dash’

Note 8: This number comes from the auxiliary on-us field in positions 47-64 of the MICR
line.
Note 9: EPC is and abbreviation for Extended Process Control. This is from positions
44 or 45 of the MICR line. Typically, this field identifies a truncation item, a qualified
check return, or an imageable truncation item.
Note 10: The CheckAmt field will never contain a decimal point and is therefore
expressed in cents. It will never contain a dollar sign.
Note 11: The amount is taken from positions 2-11 of the MICR line.
Note 12: The beginning of an item’s section in the Images File is represented by the
byte offset (from the beginning of the Images File) of the capital letter “I” at the beginning
of the string “Item”. If no images exist for the item, this field shall either contain 0 or the
Item it points to shall simply contain no views.

The following table indicates the allowed values in the various field data types used in the DBF
files under this standard. More information about this is found in Table 5. DBF File Records.

Table 2. Allowed Values of DBF File Data Field Types

DBF File Data Type Data Input
C Character Any ASCII characters.
D Date 8 ASCII digits in YYYYMMDD format.
N Numeric ASCII representation of a number using:

 - (minus) . (decimal point) 0 1 2 3 4 5 6 7 8 9

11.1.2 dBASE III Compatible DBF File Format
The DBF file format for the dBASE III and dBASE III PLUS products is documented in a file
located on the Borland International World Wide Web site. This document is reproduced in its
entirety as Appendix A. The portion of that document which specifies the structure of dBASE III
PLUS compatible DBF files has been re-formatted here for clarity. That information is described
as coming from the Using dBASE III PLUS manual, Appendix C.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 18

An useful reference is the book The File Formats Handbook by Günter Born (see references).
This book documents the dBASE III and dBASE III PLUS DBF file format and appears to be
consistent with the Borland file.

Another reference is the book File Formats for Popular PC Software. A Programmer’s
Reference by Jeff Walden (see references). This book documents the dBASE III DBF file format
and appears to be consistent with the Borland file.

A useful reference on DBF files is the DBUTIL library public domain source code developed at
Lawrence Berkeley Laboratories by Nathan Parker (ngparker@lbl.gov) for the reading of Census
Bureau CD-ROMs in DBF format. Information on this package is located at:

http://cedr.lbl.gov/data1/dbutil/doc/DBUTILSourceCode-doc.html

In particular, the file db.h contains a lot of useful information. Implementors are cautioned that in
cases where that code disagrees with this standard, then this standard holds precedence.

In this section, numbers appearing with a leading “0x” are in hexadecimal format.

A DBF file consists of the following component parts:

1. One DBF File Header, which contains:
 A variable number of DBF File Field Descriptors, one per field.

2. A variable number of DBF File Records, one per item.
3. An end-of-file terminator.

Table 3. DBF File Header

Offset Length (bytes) Description and Required Values
0 1 = 0x03 indicates valid dBASE III PLUS table file without an

associated memo DBT file.
1-3 3 Date of last update; in binary YYMMDD format.

example:
 first byte: 0x60 for 1996
 second byte: 0x0A for October
 third byte: 0x1F for the 31st
COF Note: It is best not to rely on this date. Better (4-digit year)
date fields occur elsewhere in the COF.

4-7 4,
32-bit number

Number of records in the table.
 Intel order integer.

8-9 2,
16-bit number

Number of bytes in the header.
 Intel order integer.
 Includes 0x0D terminator of the header.

10-11 2,
16-bit number

Number of bytes in a data record.
 Intel order integer.
 This is always one more than the sum of all the field lengths,
since the first byte of a record is always reserved for marking
deleted records.

12-31 20 Reserved bytes.
 Must be written as 0x0 bytes.
 Ignore on read.

32 32 times the
number of fields

Array of Field Descriptors. The size of the array depends on the
number of fields in the table file. The structure of each Field

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 19

Descriptor is shown in Table 4., below.
n+1 1 0x0D stored as the terminator for the header. n is the last byte in

the Array of Field Descriptors.

Table 4. DBF File Field Descriptor

Offset Length (bytes) Description and Required Values
0-10 11 Field name in ASCII.

 Unused bytes after the name are filled with 0x0 bytes.
11 1 Field type in ASCII.

 C for character
 D for date
 N for numeric.

12-15 4 Field data address (not useful; memory address used by dBASE)
 Must be written as 0x0 bytes.
 Ignore on read.

16 1 Field length in bytes (binary).
 For character: exact field length (no terminators).
 For numeric: includes entire field, including decimal point and
places after decimal point.

17 1 Field decimal count (binary).
 For numeric: number of places after the decimal point.

18-31 14 Reserved bytes.
 Must be written as 0x0 bytes.
 Ignore on read.

Table 5. DBF File Records

Requirements
1. The records immediately follow the 0x0D terminator of the DBF File Header.
2. Each record begins with one byte which is a space (0x20) if the record is not deleted, or is

an asterisk (0x2A) if the record is deleted.
3. Fields are in the order of and obey the formatting specified in the Array of Field Descriptors

in the DBF File Header.
4. Fields are packed into records without field separators or record terminators.
5. Character fields are in ASCII, without terminators. If the length of the text is shorter than

the length of the field as specified in the corresponding Field Descriptor, blank characters
(0x20) are placed into the remaining bytes (“trailing blanks”). COF Note: Where field
values are unknown or undefined, they shall be set to zero in the DBF file.

6. Numeric fields are in ASCII, without terminators. If the length of the numeric string is shorter
than the length of the field as specified in the corresponding Field Descriptor, the string is
right-justified in the field, with blank characters (0x20) replacing any leading zeros (“leading
blanks”). Example: “ 10003”. Numeric fields used to express amounts shall not contain
currency symbols (for example “$”) or decimal points. COF Note: Where field values are
unknown or undefined, they shall be set to zero in the DBF file.

7. A date field contains the date as an 8 character ASCII string in the format YYYYMMDD,
without blanks, separators or terminators. “Y”, “M”, and “D” as used here, represent the
appropriate characters from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Example: “19970131”.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 20

Table 6. DBF File End-of-Valid-Data

Requirements
1. The DBF End-of-Valid-Data is a single byte, functioning as a terminator. This is an ASCII

character value of 0x1A. This marker is placed there not by the operating system, but by
the database or export application. Some operating systems may also place a 0x1Abyte at
the end of the file, but the writing application must also write one explicitly.

2. There may be deleted records (marked by an asterisk in their first byte) located after the
DBF End-of-Valid-Data marker and before the actual end of the file as defined by the
operating system.

12. Index Files Structure
Accompanying each DBF format Data File are a set of Index Files; one Index File for each
indexed data field. The name of each of the Index Files is derived from both its key field’s name
and from the name of its associated COF Data File as in the table below. Not all fields are
indexed, only those with a yes in their entry in Table 1.

For a Data File named COFxxxxx.DBF (where xxxxx is a 5-digit string having leading zero digits
if necessary), the following are the names of the Index Files. These are all required.

Table 7. Index File Names Derived from Key Field Names

Key Field Name Index File Name
ProcDate PRDxxxxx.NDX
RoutTrNum RTNxxxxx.NDX
AcctNum ACTxxxxx.NDX
CheckNum CKNxxxxx.NDX
ProcCtrl PRCxxxxx.NDX
CheckAmt CKAxxxxx.NDX
ItmSeqNum ISNxxxxx.NDX

The Index Files are in the so-called NDX file format which is associated with the DBF file format.
The version of the NDX file used in this standard is that used by the dBASE III product from
Ashton Tate, since this is the best documented and most widely supported of database index file
formats.

12.1 Detailed Structure of Index Files

An NDX file is composed of multiple 512 byte pages.

The first page is a header page. It is followed by multiple index pages which make up a B-tree
data structure.

Table 8. NDX File Header Page

Offset Length (bytes) Description and Required Values
0x00 4 Start key page (root page). Record number of root (starting) page

of the B-tree. The byte offset of the root page from the start of file
is this number times 512. The root page is not necessarily the
first page after the header page.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 21

 Intel order integer.
0x04 4 Total index pages. Does not include this header page.

 Intel order integer.
0x08 4 Reserved. Write as 0x0. Ignore on read.
0x0C 2 Index key length. The length of the key field upon which the NDX

file is based. Numeric key fields are always 8 bytes long.
 Intel order integer.

0x0E 2 Maximum keys per page. Count of the maximum number of
instances of this key which can fit within a single index page,
based on the length of the key field. The actual number placed in
a given index page (which may vary) is placed in a parameter in
each index page.
 Intel order integer.

0x10 2 NDX key type.
 = 0x01 for a numeric key (including a date key)
 = 0x00 for an alphanumeric key
 Intel order integer.

0x12 4 Key record size. This is the byte offset between two consecutive
key records within an index page.
 Intel order integer.

0x16 1 Reserved. Write as 0x0. Ignore on read.
0x17 1 Unique flag. Not used by this standard. Write as 0x0. Ignore on

read.
0x18 488 Key name. This contains the name of the key field as an ASCII

string. The remainder of the 488 bytes is filled with zeros.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 22

Table 9. NDX File Index Pages

Offset Length
(bytes)

Description and Required Values

0x00 4 Key records in page. The number of key entries actually present
in this index page.
 Intel order integer.

0x04 4 Left page number 1. This contains the page number of the page
located to the left of this node in the B-tree. A page to the left in
the B-tree will contain “all the keys that in the sort sequence are
smaller than or the same size as the key required.” [Born, p. 17].

0x08 4 DBF record number 1.
 If this is a leaf node in the data structure, this field is non-zero
and contains the DBF record number within the associated DBF
file where the item is located. To calculate a byte offset within the
DBF file of the item’s record, use the record length from the DBF
file header and the size of the DBF file header.
 If this parameter is zero, this is not a leaf node, and the B-tree
data structure must continue to be traversed to find this item’s
DBF record number.
 Intel order integer.

0x0C length Key data 1. The actual key data is stored in this parameter. The
length of all these fields was specified in the NDX header page in
the Index key size parameter.
 For an alphanumeric key, the data is in ASCII. When the key is
smaller than the index key size, the remaining bytes are filled with
blanks (right blank filled).
 For a numeric key (including date keys), the key is represented
as an 8 byte IEEE floating point number.

... 4 Left page number 2.

... 4 DBF record number 2.

... length Key data 2.
- - -

... 4 Left page number n. Where n is given by the Key records in page
parameter at the top of the page.

... 4 DBF record number n.

... length Key data n.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 23

13. Images File Structure
Within the Images File may be placed multiple TIFF Group 4, TIFF JPEG, IOCA ABIC Binary,
and IOCA ABIC Grayscale images. While these are referred to as image files when they stand
alone, when they become a part of a COF “Images File”, it is clearer to refer to them as TIFF and
IOCA data streams, since they no longer exist as separate files. All of the different image data
stream types may occur within one single Images File. The Media Header File contains
information to forewarn a receiving application of which image data stream types may be present.

13.1 Supported Image Compression Types
The following image compression types are supported by the Common Output Format:

1. CCITT T.6 (Group 4)
2. JPEG Baseline DCT
3. ABIC Arithmetic Binary Image Coding for binary images
4. ABIC Arithmetic Binary Image Coding for grayscale images

13.2 Supported Image File Types
X9.46 has a means of indicating that an image file with its own format or header exists within the
X9.46 formatting. This is referred to as the embedded header mechanism.

Subsets of each of the identifiable file formats in X9.46 have been defined which are acceptable
for use with the embedded header mechanism of X9.46. These same restrictions are in the
Common Output Format.

In broad outline, these restrictions were intended to ensure that the raw compressed data
contained within the various file format wrappers could be referenced directly from an X9.46
pointer without knowledge of which wrapper had been used.

An example is to disallow TIFF’s (optional) use of strips to break compressed data into more
easily accessed chunks of separately compressed data. This cannot be used under the X9.46
embedded header approach, since a decompressor which is not TIFF-aware would think the
image had ended at the first such strip boundary.

Similarly, ABIC images support compressed data only in 64 KByte chunks, called segments. An
ABIC decompressor which is not IOCA-aware would think the image ended at the first such
segment boundary.

13.3 Aggregation Method
The aggregation method is the technique used to bind multiple images together into a single file.
Two levels of aggregation are important:

1. Keeping the front and back images associated.
2. Keeping the interchange from having too many separate files.

13.3.1 Relation to X9.46 Approach
X9.46 uses two nested looping mechanisms to place multiple images (called views) of multiple
checks (called items) into a single combined interchange. Since this is the approach which will
be implemented in an X9.46 environment, the COF adopts this structural approach. As in X9.46,
the financial data associated with an item is replicated adjacent to the images of an item, despite
the presence of this item data elsewhere in the interchange.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 24

Specific aspects of the X9.46 syntax are not adopted, however. For example, the ANSI X12 EDI
character sequences used for the loop headers are not used. Instead, literal character
sequences or tokens are used as seen in the next section.

An additional difference from X9.46 is the omission of the Item View Data, which would occur in
X9.46 between a view and the actual image file of the view. The Item View Data would (if it were
present) replicate all the image data parameters found in the TIFF tags or IOCA attributes of the
front image file and therefore is not needed in this standard.

13.4 Detailed Images File Structure
An Images File uses ASCII character strings called tokens to delineate its structure. These
tokens are separated from one another and from image data streams by a carriage return
character and a linefeed character. These are indicated in the example below as <cr><lf>. Any
additional white space (spaces, tabs) between these tokens is to be ignored.

The tokens are case sensitive and may not have embedded spaces.

Binary data streams containing individual images are interspersed with these strings. The binary
data streams have lengths associated with them which permit navigation over them.

Comments may be inserted in the following way. Comments are indicated by the occurrence of a
semicolon (“;”) immediately following the <cr><lf> pair of the preceding line. The comment field
continues until the next occurrence of a <cr><lf> pair. Only printable ASCII characters may be
present in comments.

Here is an example Images File. The characters “[“ and “]” have been used to enclose
descriptive material which is not part of the file structure.

ItemLoopHeader <cr><lf>
; example comment: The “Item Offset in Images File” points to <cr><lf>
; the “I” in the word “Item” on the next line. <cr><lf>
Item <cr><lf>

ItemData <cr><lf>
[ItemData goes here.
See Section 13.4.1, ItemData in Images Files.]

ItemViewLoopHeader <cr><lf>
; example comment: views from an XYZ transport <cr><lf>
View <cr><lf>

ViewSide <cr><lf>
Front <cr><lf>

ViewType <cr><lf>
TIFFJPEG <cr><lf>

ViewLength <cr><lf>
32468 <cr><lf>

[TIFF file first byte]
[...]
[TIFF file last byte]

View <cr><lf> [optional]
;additional views are optional <cr><lf>
ViewSide <cr><lf>

Front <cr><lf>
ViewType <cr><lf>

IOCABinary <cr><lf>
ViewLength <cr><lf>

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 25

32400 <cr><lf>
[IOCA file first byte]
[...]
[IOCA file last byte]

View <cr><lf> [optional]
ViewSide <cr><lf>

Back <cr><lf>
ViewType <cr><lf>

IOCABinary <cr><lf>
ViewLength <cr><lf>

16971 <cr><lf>
[IOCA file first byte]
[...]
[IOCA file last byte]

View <cr><lf> [optional]
ViewSide <cr><lf>

Back <cr><lf>
ViewType <cr><lf>

TIFFG4 <cr><lf>
ViewLength <cr><lf>

10973 <cr><lf>
[TIFF file first byte]
[...]
[TIFF file last byte]

ItemViewLoopTrailer <cr><lf>
Item <cr><lf>

ItemData <cr><lf>
[ItemData goes here.
See Section 13.4.1, ItemData in Images Files.]

ItemViewLoopHeader <cr><lf>
View <cr><lf>

ViewSide <cr><lf>
Front <cr><lf>

ViewType <cr><lf>
IOCAGray <cr><lf>

ViewLength <cr><lf>
12972 <cr><lf>

[IOCA file first byte]
[...]
[IOCA file last byte]

View <cr><lf> [optional]
ViewSide <cr><lf>

Back <cr><lf>
ViewType <cr><lf>

TIFFJPEG <cr><lf>
ViewLength <cr><lf>

16381 <cr><lf>
[TIFF file first byte]
[...]
[TIFF file last byte]

ItemViewLoopTrailer <cr><lf>
...

ItemLoopTrailer <cr><lf>

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 26

Each Item must have at least one view unless no images exist for the item. In that case, the
ItemViewLoopHeader <cr><lf> is immediately followed by the ItemViewLoopTrailer (possibly with
intervening white space or comment lines).

Items may have multiple views for each side.

Each view has a ViewType which may be indicated by one of the following tokens:

• IOCAGray
• IOCABinary
• TIFFJPEG
• TIFFG4

Each view has a ViewSide which indicates whether the view is of the front face or of the back
face of the item. The following tokens are used:

• Front
• Back

Each view has a ViewLength. This is an ASCII-formatted decimal number indicating the exact
length of the sequence of individual image file bytes for a single view. The first byte of the TIFF
or IOCA data stream representing the view occurs immediately after the <cr><lf> pair which
follows the length. Thus, the tab and space characters used in the example above to improve
readability could all be present in an actual interchange, except those tab and space characters
between the ViewLength number and the actual image data bytes. (The additional tab and space
characters may also not be present before the semicolon introducing a comment line.) An
application parsing an Images File would be wise to check the “magic numbers” for TIFF and
IOCA files to confirm that the proper starting byte of the image data stream has been found.
These are 0x49 or 0x4D for TIFF files and 0x70 for IOCA files.

A modular design of COF reader software is recommended, with (possibly multiple) separate
viewers being invoked to display the extracted image data stream.

13.4.1 ItemData in Images Files
In the description of the structure of Images Files in the prior section, the construction

[ItemData goes here]

was used. The current section describes the format of the ItemData line which appears near the
top of each Item structure in the ItemLoop before the ItemViewLoopHeader.

The ItemData contains the database information for the row of the DBF file corresponding to a
given item. This information is formatted in a “flat file” form, specifically, as ASCII strings
delimited by single tab characters. The ordering of the fields across the line mirrors the ordering
of the rows in Table 1.

Numeric fields are decimal numbers and may or may not be padded to their specified length by
means of leading zeros.

Character fields may or may not be padded to their specified length by means of trailing blanks.

Date fields have the format YYYYMMDD, with all character positions using ASCII numeric digits.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 27

Here is an example of such an ItemData row. In the example, numeric fields and character fields
have been padded to their specified lengths by means of leading zeros and trailing blanks,
respectively. Additional line breaks have been introduced for readability in this text, but are not to
be present in actual ItemData. Tab characters are shown as <tab>. A comment line is present
which assists with identifying the fields.

; Item Sequence Number Capture Site Identifier Process Date
 Capture Date Routing and Transit Number Account Number
 Check Number Process Control Aux On Us
 EPC Amount Item Offset in Images File
 <cr><lf>

000000123456789<tab> 123456789<tab> 19970110<tab>
19970109<tab> 234567890<tab> 1234567890123456<sp><tab>
001234<tab> 001234<tab> 5432112345678<sp><sp><tab>
2<tab> 0000002114<tab> 00000000001234567890
<cr><lf>

13.5 Detailed TIFF File Structure
The term “TIFF file” is used here to refer to the self-contained TIFF data stream for a single
image, but it is understood that individual TIFF files do not appear on the media for reasons of
efficiency. Instead, these individual TIFF files are concatenated together, along with additional
structure, into an Images File. There may be multiple Images Files on a piece of media
containing multiple File Suites.

13.5.1 General Notes on TIFF Tags
1. ImageWidth and ImageLength need not be multiples of 8 and reading applications should not

make that assumption.
2. For the purposes of this standard, only the first image in a TIFF file will be treated as an

interchanged image. Front and back images must each be in their own TIFF files, not placed
in a single multi-page TIFF file.

3. Despite the TIFF recommendation that strips be less than 8K (TIFF 6.0 Specification, page
39), common practice in check imaging is to use a single strip, no matter how large the
compressed data size. The COF requires writers to generate files having a single strip.

4. If the default value for a given tag applies, the tag need not be present.
5. TIFF files may be in either Intel or Motorola byte order. As a reminder, the “II” or “MM”

indicators of byte order apply only to tag information, not to the compressed or
uncompressed image data.

13.5.2 Group 4 Compressed Binary Files
The following tags are mandatory and (unless defaulted) must appear in numerical order by tag
number within the TIFF file. This list is from the table on page 21 of the TIFF Specification (see
references) and constitutes the requirements for Baseline TIFF Bilevel Images.

Beyond the requirements for Baseline TIFF Bilevel Images, the Orientation tag has also been
included. COF readers must properly interpret any of the 8 possible values of the Orientation tag
and, after decompressing, must paint the raster data in the appropriate directions for proper
viewing.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 28

Table 10. Required Tags for Group 4 Compressed TIFF Files

Tag Number Tag Name Required Value
256 ImageWidth Any value
257 ImageLength Any value
258 BitsPerSample 1
259 Compression 4
262 PhotometricInterpretation 0
273 StripOffsets This array will have only one entry
274 Orientation Any valid value
278 RowsPerStrip Must be equal to ImageLength
279 StripByteCounts This array will have only one entry
282 XResolution Any value
283 YResolution Any value
296 ResolutionUnit Any valid value

TIFF requires readers to gracefully ignore any optional tags which they do not expect or
understand, so in a sense, any other additional tags are allowed. It would be unreasonable to
expect the recipient to properly interpret any tags beyond those listed in this section, however.

13.5.2.1 Notes Regarding the Group 4 Image Tags
1. The FillOrder tag is not listed as necessary since the default is FillOrder = 1, which specifies

bits are placed into a byte in the MSB to LSB direction. This standard specifically does not
permit the FillOrder = 2 ordering, which is LSB to MSB.

2. The omission of the T6Options tag implies its value is its default, T6Options=0. This
standard specifically does not permit the value T6Options=1. This means that the obscure
and little-used “uncompressed mode” of ITU-T Recommendation T.6 (Group 4) is not
allowed.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 29

13.5.3 JPEG Files
The following tags are mandatory and (unless defaulted) must appear in numerical order by tag
number within the TIFF file. This list is derived from the table on page 22 of the TIFF
Specification (see references) and in large part constitutes the requirements for Baseline TIFF
Grayscale Images.

Beyond the base requirements for TIFF JPEG Images, the Orientation tag has also been
included. COF readers must properly interpret any of the 8 possible values of the Orientation tag
and, after decompressing, must paint the raster data in the appropriate directions for proper
viewing.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 30

Table 11. Required Tags for JPEG Compressed TIFF Files

Tag Number Tag Name Required Value
256 ImageWidth Any value
257 ImageLength Any value
258 BitsPerSample 8
259 Compression 6
262 PhotometricInterpretation 1
273 StripOffsets This array will have only one entry
274 Orientation Any valid value
278 RowsPerStrip Must be equal to ImageLength
279 StripByteCounts This array will have only one entry
282 XResolution Any value
283 YResolution Any value
296 ResolutionUnit Any valid value
512 JPEGProc 1
513 JPEGInterchangeFormat Byte offset into the TIFF file of the 0xFF

byte of the JPEG Start of Image (SOI)
marker code. Since this standard only
supports JPEG data in JPEG
Interchange Format as defined in Annex
B of the JPEG standard, this tag may not
be 0 and thus must be present.

514 JPEGInterchangeFormatLength Length in bytes of the JPEG Interchange
Format data stream.

515 JPEGRestartInterval If restart markers are present in the
JPEG Interchange Format data stream,
this value tells the number of Minimum
Coded Units (MCUs) between restart
markers. If no restart markers are used,
this value shall be 0 or the entire tag
may be omitted, since 0 is the default
value of the tag.

519 JPEGQTables This field points to the byte offset within
the JPEG data stream of the marker for
the single quantization table used with a
grayscale image.

520 JPEGDCTables This field points to a single offset within
the JPEG data stream of the marker for
the single DC Huffman table used with a
grayscale image.

521 JPEGACTables This field points to a single offset within
the JPEG data stream of the marker for
the single AC Huffman table used with a
grayscale image.

TIFF requires readers to gracefully handle any tags which they do not expect or understand, so
in a sense, any additional tags are allowed. It would be unreasonable to expect the recipient to
properly interpret any tags beyond those listed in this section, however.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 31

13.5.3.1 Notes Regarding the JPEG TIFF Tags
1. An emerging new approach to JPEG in TIFF uses a Compression tag value of 7, versus the

value of 6 used in TIFF 6.0. It is strongly recommended that readers of COF Images Files
anticipate the migration of JPEG under TIFF to this simpler approach and support both
Compression=6 and Compression=7. Under the new approach, no JPEG attributes are
broken out into tags (as in the TIFF 6.0 scheme), since this replicates the information found
down in the JPEG data stream. This approach to JPEG within TIFF is discussed in the TIFF
Technical Note Number 2. For further information, please see the URLs:

http://www.picturel.com/PDF/ttn2drft.pdf, or
http://www.picturel.com/TXT/ttn2drft.txt

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 32

13.6 Detailed IOCA File Structure
The term “IOCA file” is used here to refer to the self-contained IOCA data stream for a single
image, but it is understood that individual IOCA files do not appear on the media for reasons of
efficiency. Instead, these individual IOCA files are concatenated together, along with additional
structure, into an Images File. There may be multiple Images Files on a piece of media
containing multiple File Suites.

13.6.1 ABIC Compressed Binary Files
The following attributes are mandatory:

Table 12. Required Attributes for ABIC Compressed Binary IOCA Files

IOCA Field Parameter,
length (bytes)

Allowed
Values

Notes

Begin
Segment

ID, 1 0x70

LENGTH, 1 0x00
Begin Image
Content

ID, 1 0x91

LENGTH, 1 0x01
OBJTYPE, 1 0xFF IOCA object

Image Size
Parameter

ID, 1 0x94

LENGTH, 1 0x09
UNITBASE, 1 0x00 10 inches is the unit used for the following

resolution values.
HRESOL, 2 0x0000 --

0x7FFF
Horizontal resolution. A typical value is 2400
dots per 10 inches (describing 240 dpi), but no
constraint is placed on this field.

VRESOL, 2 0x0000 --
0x7FFF

Vertical resolution. A typical value is 2400 dots
per 10 inches (describing 240 dpi), but no
constraint is placed on this field.

HSIZE, 2 0x0000 --
0x7FFF

Horizontal size in pixels.

VSIZE, 2 0x0000 --
0x7FFF

Vertical size in pixels.

Image
Encoding
Parameter

ID, 1 0x95 (Note 1)

LENGTH, 1 0x02
COMPRID, 1 0x08 ABIC (Note 2)
RECID, 1 0x01 RIDIC (normal raster order).

IDE Size
Parameter

ID, 1 0x96

LENGTH, 1 0x01
IDESZ, 1 0x01 1 bit per pixel.

IDE Structure
Parameter

ID, 1 0x9B

LENGTH, 1 0x06
FLAGS, 1 0x00 no Gray code.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 33

FORMAT, 1 0x02 YCrCb color space.
SIZE1 0x01 1 bit (Note 3).

Image Data ID, 2 0xFE92
LENGTH, 2 0x0001 --

0xFFFF
Length of actual image data (Note 4).

DATA, 0 --
 65,535

Any Actual image data.

End Image
Content

ID, 1 0x93

LENGTH, 1 0x00
End Segment ID, 1 0x71

LENGTH, 1 0x00

Note 1. The BITORDR attribute shall be omitted from this segment and therefore the default bit
order for the image data is to be used, which is “bit order within each image data byte is from left
to right.

Note 2. JPEG compression not allowed here.

Note 3: The SIZE2 and SIZE3 attributes shall be omitted from this segment and thus default to
0.

Note 4. ABIC coded image data may not be more than 65,535 bytes in length in this standard.

Note 5. Use of ABIC decompression routines requires a license from IBM unless the provider of
the routines has a license.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 34

13.6.2 ABIC Compressed Grayscale Files
The following attributes are mandatory:

Table 13. Required Attributes for ABIC Compressed Grayscale IOCA Files

IOCA Field Parameter,
length (bytes)

Allowed
Values

Notes

Begin
Segment

ID, 1 0x70

LENGTH, 1 0x00
Begin Image
Content

ID, 1 0x91

LENGTH, 1 0x01
OBJTYPE, 1 0xFF IOCA object

Image Size
Parameter

ID, 1 0x94

LENGTH, 1 0x09
UNITBASE, 1 0x00 10 inches is the unit used for the following

resolution values.
HRESOL, 2 0x0000 --

0x7FFF
Horizontal resolution. A typical value is 800 dots
per 10 inches (describing 80 dpi), but no
constraint is placed on this field.

VRESOL, 2 0x0000 --
0x7FFF

Vertical resolution. A typical value is 800 dots
per 10 inches (describing 80 dpi), but no
constraint is placed on this field.

HSIZE, 2 0x0000 --
0x7FFF

Horizontal size in pixels.

VSIZE, 2 0x0000 --
0x7FFF

Vertical size in pixels.

Image
Encoding
Parameter

ID, 1 0x95 (Note 1)

LENGTH, 1 0x02
COMPRID, 1 0x0A Concatenated ABIC (Note 2).
RECID, 1 0x01 RIDIC (normal raster order).

IDE Size
Parameter

ID, 1 0x96

LENGTH, 1 0x01
IDESZ, 1 0x04 4 bits per pixel.

IDE Structure
Parameter

ID, 1 0x9B

LENGTH, 1 0x06
FLAGS, 1 0x40 0x40 apparently specifies use of the Gray code

listed below (Note 5), although this is not
documented in the Fourth Edition of the IOCA
Reference (see references).

FORMAT, 1 0x02 YCrCb color space, since this is grayscale.
SIZE1 0x04 4 bits (Note 3).

Image Data ID, 2 0xFE92
LENGTH, 2 0x0001 -- Length of actual image data (Note 4).

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 35

0xFFFF
DATA, 0 --
 65,535

Any Actual image data (Note 6).

End Image
Content

ID, 1 0x93

LENGTH, 1 0x00
End Segment ID, 1 0x71

LENGTH, 1 0x00

Note 1. The BITORDR attribute shall be omitted from this segment and therefore the default bit
order for the image data is to be used, which is “bit order within each image data byte is from left
to right.”

Note 2. CCITT G4 compression not allowed here.

Note 3: The SIZE2 and SIZE3 attributes shall be omitted from this segment and thus default to
0.

Note 4. ABIC coded image data may not be more than 65,535 bytes in length in this standard.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 36

Note 5. The Gray code used is not strictly a Gray code, but is specified by the following table of
binary values:

Input Value After
Decompression and
Plane Re-assembly

Recovered Original
Value for Display

0000 0000
0001 0001
0010 0011
0011 0010
0100 0111
0101 0110
0110 0100
0111 0101
1000 1111
1001 1110
1010 1100
1011 1101
1100 1000
1101 1001
1101 1101
1111 1010

Note 6. This coded image data contains four concatenated separate binary images, each
representing a different bit plane, with the most significant bit plane occurring first. This
concatenated data stream is ABIC-coded as a single entity. This concatenated data stream is
then passed in its entirety through the ABIC decompressor, then plane-reassembled into Gray-
coded grayscale nibbles after decompression. Use of ABIC decompression routines requires a
license from IBM unless the provider of the routines has a license.

13.7 Financial Data In Image Files
Financial or other non-image data may be placed into private or registered tags within a TIFF file.
Creators of COF interchanges are cautioned, however, that such a use of a TIFF file is not
standardized and that the receiver of the COF interchange will rely instead on the financial data
found in the Data File or in the Images File.

The most appropriate use for such tags would then be as a cross-check against some of the data
elements in the Data File to confirm that the correct image was retrieved from the Images File.
The ItemSequenceNumber placed in the Images File within each Item could serve this cross-
checking purpose as well.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 37

14. Physical Media Types
The supported physical media types include:

• CD-ROM
• various tape cartridge formats

14.1 Physical Labeling Requirements
Each piece of media generated by a writer shall have a human-readable adhesive label
containing at a minimum the information identified in this section. Example text is used to
indicate the format.

Date: 14 June 1996
From: FRB Boston
To: Bank of Erehwon
Media Set Info: 1 of 4

NOTE TO IMPLEMENTORS: Writers of CD-ROMs are cautioned that labels which are
not radially symmetric may sometimes introduce sufficient wobble to cause read errors.
Some labels use adhesives which can attack the active layer of the disk. Some marking
devices can similarly attack the upper (active) surface of the disk.

14.2 Media-Specific Issues: CD-ROM
CD-ROM media shall have logical formatting compliant with ISO-9660.

CD-ROM media shall have an 11-character ISO-9660 volume label which is constructed as
follows:

FYYMDDSSxxx
where:

The leading F is a literal “F” character indicating a piece of media created by the Federal
Reserve.
YY indicates the year, e.g. “97”
M indicates the month in hexadecimal form, as follows:

1 for January
2 for February
3 for March
4 for April
5 for May
6 or June
7 for July
8 for August
9 for September
A for October
B for November
C for December

DD indicates the day of the month, e.g. “31”
SS indicates which Federal Reserve site generated the data
xxx indicates a number unique to a given receiving financial institution for media received
by this Federal Reserve site within this day.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 38

The two character “SS” field will be assigned by the generating Federal Reserve sites
cooperatively to guarantee its uniqueness. The Media Header File and the physical label
identifies the generating institution in more detailed form for use by the receiving party.

The two character “YY” field is assigned solely to guarantee the uniqueness of the volume labels
of CD-ROMs which might co-exist in a common archive. Since such archives will not be holding
volumes for 100 years (more likely 7 to 15 years), a longer year designation is not necessary
here. The Media Header File and the physical label identifies the date in more detailed form for
use by the receiving party.

Other organizations than the Federal Reserve may use the COF format to generate data and
may assign unique volume labels in other ways. Such organizations should not use a leading “F”
character in their volume labels to avoid confusion.

Unique volume labels may be useful when the received CD-ROMs are placed in jukeboxes from
some manufacturers.

The usage of other ISO 9660 fields is at the discretion of the writing implementation.

14.3 Media-Specific Issues: Tape

14.3.1 Tape Media Types
The supported tape media types include:

• DLT™ tapes
• 3480, 3490, 3490E compatible tapes
• 8 mm helical scan tapes

14.3.2 Physical Labeling Requirements
Each piece of media generated by a writer shall have a human-readable adhesive label
containing at a minimum the information identified in this section. Example text is used to
indicate the format.

Date: 14 June 1996
From: FRB Boston
To: Bank of Erehwon
Set Info: 1 of 4

14.3.3 Media-Specific Issues: Tape
Tape media shall have physical characteristics as specified in the sections below.

Tape media shall have logical formatting compliant with ANSI X3.27-1987 and shall use “IBM
labeling” as specified in the section below.

Tape drives capable of compressing data shall be used in the uncompressed mode, since
already-compressed image data will not be further compressible by this means and may, in fact,
increase in size when so treated.

14.3.4 Tape Logical Formatting
IBM labeling is to be used in the logical formatting of the tapes, regardless of physical tape type.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 39

This standard only permits the tape structure described in X3.27 as “Multiple File, Single
Volume.” This means that a tape volume does not straddle multiple individual pieces of tape
media. This standard handles the need for interchanges greater in size than an individual piece
of media through the alternate mechanism of Media Sets.

An implication of this requirement is that a writer of COF-compliant tapes needs to know in
advance to writing that the File Suites being written to a piece of media will not exceed the
capacity of that piece of media.

Tape labels are 80-byte records written to the tape to describe and organize the files present on
the tape. IBM standard labels use the EBCDIC character set and thus the present standard does
as well.

According to ANSI X3.27, the fields of tape labels may use the so-called “a-characters”, a set of
characters including the capital letters, the numerical digits and some common printable
punctuation characters. The following table (in ASCII order to facilitate translating to write in
EBCDIC) lists those characters.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 40

Table 14. Tape Label Characters.

Name EBCDIC ASCII
space 0x40 0x20

! exclamation point 0x5A 0x21
“ quotation mark 0x7F 0x22
% percent sign 0x6C 0x25
& ampersand 0x50 0x26
‘ apostrophe 0x7D 0x27
(left parenthesis 0x4D 0x28
) right parenthesis 0x5D 0x29
* asterisk 0x5C 0x2A
+ plus sign 0x4E 0x2B
, comma 0x6B 0x2C
- hyphen 0x60 0x2D
. period 0x4B 0x2E
/ slant 0x61 0x2F
0 digit 0xF0 0x30
1 digit 0xF1 0x31
2 digit 0xF2 0x32
3 digit 0xF3 0x33
4 digit 0xF4 0x34
5 digit 0xF5 0x35
6 digit 0xF6 0x36
7 digit 0xF7 0x37
8 digit 0xF8 0x38
9 digit 0xF9 0x39
: colon 0x7A 0x3A
; semicolon 0x5E 0x3B
< less-than dign 0x4C 0x3C
= equals sign 0x7E 0x3D
> greater-than sign 0x6E 0x3E
? question mark 0x6F 0x3F

A letter 0xC1 0x41
B letter 0xC2 0x42
C letter 0xC3 0x43
D letter 0xC4 0x44
E letter 0xC5 0x45
F letter 0xC6 0x46
G letter 0xC7 0x47
H letter 0xC8 0x48
I letter 0xC9 0x49
J letter 0xD1 0x4A
K letter 0xD2 0x4B
L letter 0xD3 0x4C
M letter 0xD4 0x4D
N letter 0xD5 0x4E
O letter 0xD6 0x4F
P letter 0xD7 0x50
Q letter 0xD8 0x51
R letter 0xD9 0x52
S letter 0xE2 0x53
T letter 0xE3 0x54
U letter 0xE4 0x55
V letter 0xE5 0x56
W letter 0xE6 0x57
X letter 0xE7 0x58
Y letter 0xE8 0x59
Z letter 0xE9 0x5A
_ underline 0x6D 0x5F

The required structure of a tape with its labels shall be as follows:

1. VOL1 label
2. HDR1 label
3. HDR2 label
4. tape mark
5. first file
6. tape mark
7. EOF1 label
8. EOF2 label
9. tape mark

 [repeat 2. through 9. for each file]

10. final additional tape mark

The structure of the VOL1 label is as follows.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 41

Table 15. VOL1 Label

Field
Name

Posn. Length Description

Label identifier 1 3 “VOL”
Label number 4 1 The number “1”
Volume serial
number

5 6 This is an identification code assigned to the
volume when it enters the system.
COF Note: may use blanks.

Reserved 11 1 zero
VTO pointer 12 10 blanks
Reserved 22 10 blanks
Reserved 32 10 blanks
Owner name and
address code

42 10 This identifies the owner of the volume.
COF Note: may use blanks.

Reserved 52 29 blanks

The structure of the HDR1, EOF1 labels is as follows.

Table 16. HDR1, EOF1 Labels

Field
Name

Posn. Length Description

Label identifier 1 3 “HDR”, or “EOF”
Label number 4 1 The number “1”
File identifier 5 17 These are the rightmost 17 bytes of the file name

and includes GnnnVnn if part of the generation
data group.
COF Note: This is the file name, in upper-case
EBCDIC, left justified and padded with blanks.

File serial number 22 6 This is the volume serial number of the tape
volume containing the file.
COF Note: may use blanks.

Volume sequence
number

28 4 This number (0001-9999) indicates the order of the
volume within the multi-volume group created at
the same time.
COF Note: use 0001.

File sequence 32 4 This number (0001-9999) indicates the relative
position of the file within a multi-file group.
COF Note: use 0001.

Generation number 36 4 This field contains the number from 0000 to 9999
indicating the absolute generation number if the file
is part of a generation data group (the first
generation is 0000).
COF Note: use blanks.

Version number 40 2 This field contains a number from 00 to 99
indicating the version number of the generation if
the file is part of a generation data group (the first
generation is 0000).
COF Note: use blanks.

Creation date 42 6 This is the year and day the file was created and is
of the form:

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 42

c = century (blank=1900; 0=2000; etc.)
yy = year (00-99)
ddd = day (001-366)

COF Note: may use zeros or may use the actual
file creation date. If zeros are here, a COF reader
should assign a date drawn from the Media Header
File (HEADER.TXT) to all files extracted from the
tape.

Expiration date 48 7 This is the year and day when the file may be
scratched or overwritten. The data is of the same
form as creation date.
COF Note: use zeros.

File security 54 1 This is a code identifying the security status of the
file.

0 means no security
1 means security protection on read, write,
delete
2 means security protection on write or
delete

COF Note: use zero.
Block count 55 6 For EOF1, this is the number of data blocks in the

file on the current volume (exclusive of labels and
tape marks). For HDR1, this field contains zeros.
COF Note: use actual block count for each file in
its corresponding EOF1 label.

System code 61 13 This code identifies the system.
COF Note: use upper-case EBCDIC string to
identify the COF writing application vendor.

Reserved 74 7 blanks

The structure of the HDR2, EOF2 labels is as follows.

Table 17. HDR2, EOF2 Labels

Field
Name

Posn. Length Description

Label identifier 1 3 “HDR”, or “EOF”
Label number 4 1 The number “2”
Record format 5 1 This is an alphabetic character that indicates the

format of the records in the associated file.
F - fixed length
V - variable length
U - undefined length

COF Note: Use V.
Block length 6 5 This is a binary number (up to 32,760) that

indicates the block length in bytes. Usage
depends on record format field:

F - Must be an integral multiple of record
length.
V - Indicates maximum block length in file,
including the 4-byte length field.
U - Indicates maximum block length.

COF Note: Since V (variable length) record format

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 43

is used, this indicates the maximum block length in
the file, including the 4-byte length field. Some
tape drives may experience faster performance
where this value is large and a multiple of 1024,
but note the maximum length restriction above.

Record length 11 5 This is a number that indicates record length in
bytes.

F - Indicates actual record length.
V - Indicates maximum record length in file
including 4-byte length field.
U - Zeros.

COF Note: Matches block length value.
Tape density 16 1 This is a code that indicates the recording density

of the tape.
2 - 800 bpi
3 - 1600 bpi
blank for 3480

COF Note: use blank.
File position 17 1 This is a code that indicates a volume switch.

0 indicates that no volume switch has
occurred.
1 indicates a volume switch has occurred.

COF Note: use 0.
Job/job step
identification

18 17 This is an indication of the job/job step that created
the file.
COF Note: use blanks.

Tape recording
technique

35 2 This is either a code for 7-track tapes, or blanks
for 9-track tapes.
COF Note: use blanks.

Printer control
character

37 1 This is a code indicating whether a control
character set was used to create the file, and the
type of control characters used:

A - ANSI control characters
M - machine control characters
blank - no control characters

COF Note: use blank.
Reserved 38 1 blank.
Block attribute 39 1 This is a code indicating the block attribute used to

create the file. The codes are:
B - blocked records
S - spanned records
R - blocked and spanned records
blank - not blocked and not spanned
records

COF Note: Use blocked.
Reserved 40-80 41 blanks

14.3.5 Required Files and File Ordering
The set of files required by this standard to be present on tape media is slightly different than the
set of files required to be present on CD-ROM media. This is because the non-random-access
nature of tape makes the use or generation of certain files awkward or impractical.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 44

A Data File and its associated Index Files may not appear within a File Suite on a piece of tape
media. The financial data associated with an item is stored within the Images File, adjacent to
the image views associated with that item, just as it is on CD-ROM media. CD-ROM media
include the Data File and Index Files to assist in random access to an item within the Images
File, a use not practical with tape media.

The ordering of files for tape media is otherwise identical to that for CD-ROM media.

14.3.6 Media-Specific Issues: Tape, DLT™
DLT™ tapes shall have physical characteristics and physical recording format as described in the
following standards.

Among DLT™ formats, the preferred format at this time is DLT4, which permits 20 Gigabytes per
tape cartridge.

14.3.6.1 DLT1
ANSI X3.242-1994 P DLT 1 FORMAT FOR DLT260

American National Standard for Information Systems.
Magnetic Tape Cartridge for Information Interchange
- 0.50 in (12.65 mm), Serial Serpentine, 48-track,
42,500 bpi (1673 bpmm) DLT 1 Format

ECMA 182 DLT1 FORMAT FOR DLT260
DATA INTERCHANGE ON 12,7 MM 48-TRACK
MAGNETIC TAPE CARTRIDGES - DLT 1 FORMAT

ISO-IEC DIS 13421
Information Technology - Data Interchange on 12,7 mm 48-track
magnetic tape cartridge - DLT1 format

14.3.6.2 DLT2
ANSI X3.266-1996 P DLT 2 FORMAT FOR DLT600

American National Standard for Information Systems.
Magnetic Tape Cartridge for Information Interchange
- 0.50 in (12.65 mm), Serial Serpentine, 112-track,
42,500 bpi (1673 bpmm) DLT 2 Format

ECMA 197 DLT2 FORMAT FOR DLT600
DATA INTERCHANGE ON 12,7 MM 112-TRACK
MAGNETIC TAPE CARTRIDGES - DLT 2 FORMAT

ISO-IEC DIS 13962
Information Technology - Data Interchange on 12,7 mm 112-track
magnetic tape cartridge - DLT2 format

14.3.6.3 DLT3
ANSI X3.282-199X DLT 3 FORMAT FOR DLT2000

American National Standard for Information Systems.
Magnetic Tape Cartridge for Information Interchange
- 0.50 in (12.65 mm), Serial Serpentine, 128-track,
62,500 bpi (2460 bpmm) DLT 3 Format

ECMA 209 DLT3 FORMAT FOR DLT2000
DATA INTERCHANGE ON 12,7 MM 128-TRACK
MAGNETIC TAPE CARTRIDGES - DLT 3 FORMAT

ISO-IEC DIS 14833
Information Technology - Data Interchange on 12,7 mm 128-track

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 45

magnetic tape cartridge - DLT3 format

14.3.6.4 DLT4
ANSI Project No. 1160 Latest 3rd draft X3B5 96-218
 DLT 4 FORMAT FOR DLT2000

American National Standard for Information Systems.
Magnetic Tape Cartridge for Information Interchange
- 0.50 in (12.65 mm), Serial Serpentine, 128-track,
81 600 bpi (3213 bpmm) DLT 4 Format

ECMA 231 DLT4 FORMAT FOR DLT4000
DATA INTERCHANGE ON 12,7 MM 128-TRACK
MAGNETIC TAPE CARTRIDGES - DLT 4 FORMAT

ISO-IEC DIS 15307 In review cycle to be published shortly
Information Technology - Data Interchange on 12,7 mm 128-track
magnetic tape cartridge - DLT4 format

14.3.6.5 DLT5
ANSI Project No. 1229 Latest 1st draft X3B5 96-220

DLT 5 FORMAT FOR DLT7000
American National Standard for Information Systems.
Magnetic Tape Cartridge for Information Interchange
- 0.50 in (12.65 mm), Serial Serpentine, 128-track,
85 940 bpi (3383 bpmm) DLT 5 Format

14.3.7 Media-Specific Issues: Tape, 3480-Compatible
3480-compatible tapes shall have physical characteristics and physical recording format as
described in the following standards.

14.3.7.1 3480
The following standards are related, with the first one published in 1990. They deal with both the
cartridge and the recording format.

ANSI X3.180
ECMA-120
ISO/IEC 9661

14.3.7.2 3490
The following standards are related, with the first one published in 1994. They deal with the
recording format. These standards use the cartridge from ANSI X3.180.

ANSI X3.224
ECMA-152
ISO/IEC 11559

14.3.7.3 3490E
The following standards are related, with the first one published in 1996. They deal with the
recording format.

ANSI X3.261
ECMA-196
ISO/IEC 14251

The following standards are related, with the first one published in 1996. They deal with the
cartridge.

ANSI X3.265

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 46

ECMA-196
ISO/IEC 14251

14.3.8 Media-Specific Issues: Tape, 8mm Helical-Scan
8mm helical-scan tapes shall have physical characteristics and physical recording format as
described in:

ANSI Helical-Scan Digital Computer Tape Cartridge, X3B5/89-136, Revision 6,
and

EXB-8500 Cartridge Tape Subsystem Product Specification. Document Number
510200-003 from Exabyte Corporation, Boulder, CO. 303-442-4333.

15. References

1. TIFF Specification, Revision 6.0, Final, June 3, 1992. Adobe Corporation.
2. TIFF Technical Note Number 2, draft.
3. Image Object Content Architecture (IOCA) Reference. 4th edition, August 1993, IBM

Corporation, Armonk, NY. Document number: SC31-6805-02.
4. ISO 10918-1 / ITU-T Recommendation T.81, Digital Compression and Coding of

Continuous-Tone Still Images (JPEG Standard).
5. Pennebaker, W.B. and Mitchell, J.M., JPEG Still Image Data Compression Standard, Van

Nostrand Reinhold, New York, 1993.
6. ITU-T Recommendation T.6.
7. Arps, R.B., et al, A multi-purpose VLSI chip for adaptive data compression of bilevel

images, IBM Journal of Research and Development, vol. 32, no. 6, November, 1988, pp 775-
795. (ABIC Specification).

8. ANSI X9.46. Financial Image Interchange Standard (FIIS).
9. ANSI X9 TG-15, draft. Technical Guideline on FIIS.
10. ANSI X9.37-1994. Specifications for Electronic Check Exchange.
11. ISO 9660 CD-ROM Standard.
12. ANSI X3.27 - 1987, Information Systems -- File structure and labeling of magnetic tapes for

information interchange.
13. MVS/DFP Version 3 Release 2, Using Magnetic Tape Labels and File Structure. Document

number: SC26-4565-0.
14. ANSI Helical-Scan Digital Computer Tape Cartridge, X3B5/89-136, Revision 6.
15. EXB-8500 Cartridge Tape Subsystem Product Specification. Document number: 510200-

003. Exabyte Corporation, Boulder, CO. 303-442-4333.
16. The File Formats Handbook by Günter Born, 1995, International Thomson Computer Press,

London, ISBN 1-85032-117-5.
17. File Formats for Popular PC Software. A Programmer’s Reference by Jeff Walden, 1986,

John Wiley & Sons, Inc, New York.
18. ANSI/IEEE 754, IEEE Standard for Binary Floating-Point Arithmetic, IEEE, New York, NY.

16. Revision History

COF Version 1.1
10 January 1997
Change Number Description
1. Initial release.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 47

17. Annex A (normative). DBF File Format

The following document was retrieved from the Borland International web site technical
documents section. To retrieve it, perform a search by the document number from the location:

http://www.borland.com/techsupport/VdBASE/search.html

Document Number: TI2821

Title: dBASE .DBF File Structure

Note: This standard only permits use of the format described below as the dBASE III
PLUS format, the original format, which appears first in the file. The later generations of
the format are also included here to assist in identifying problems in a COF file which
appears to incorrectly generate a later version of the DBF format.

In this file, a trailing “h” is used to indicate a hexadecimal value.

Sometimes it is necessary to delve into a dBASE table outside the control
 of the Borland Database Engine (BDE). For instance, if the .DBT file (that
 contains memo data) for a given table is irretrievably lost, the file will
 not be usable because the byte in the file header indicates that there
 should be a corresponding memo file. This necessitates toggling this byte
 to indicate no such accompanying memo file. Or, you may just want to write
 your own data access routine.

Below are the file structures for dBASE table files. Represented are the
 file structures as used for various versions of dBASE: dBASE III PLUS 1.1,
 dBASE IV 2.0, dBASE 5.0 for DOS, and dBASE 5.0 for Windows.

**
The data file header structure for dBASE III PLUS table file.
**

The table file header:
======================

Byte Contents Description
----- -------- --
0 1 byte Valid dBASE III PLUS table file (03h without a memo
 (.DBT file; 83h with a memo).
1-3 3 bytes Date of last update; in YYMMDD format.
4-7 32-bit Number of records in the table.
 number
8-9 16-bit Number of bytes in the header.
 number
10-11 16-bit Number of bytes in the record.
 number
12-14 3 bytes Reserved bytes.
15-27 13 bytes Reserved for dBASE III PLUS on a LAN.
28-31 4 bytes Reserved bytes.
32-n 32 bytes Field descriptor array (the structure of this array is
 each shown below)
n+1 1 byte 0Dh stored as the field terminator.

n above is the last byte in the field descriptor array. The size of the
 array depends on the number of fields in the table file.

Table Field Descriptor Bytes
============================

Byte Contents Description
----- -------- --

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 48

0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (C, D, L, M, or N).
12-15 4 bytes Field data address (address is set in memory; not useful
 on disk).
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved for dBASE III PLUS on a LAN.
20 1 byte Work area ID.
21-22 2 bytes Reserved for dBASE III PLUS on a LAN.
23 1 byte SET FIELDS flag.
24-31 1 byte Reserved bytes.

Table Records
=============

The records follow the header in the table file. Data records are preceded
 by one byte, that is, a space (20h) if the record is not deleted, an
 asterisk (2Ah) if the record is deleted. Fields are packed into records
 without field separators orrecord terminators. The end of the file is
 marked by a single byte, with the end-of-file marker, an OEM code page
 character value of 26 (1Ah). You can input OEM code page data as indicated
 below.

Allowable Input for dBASE Data Types
====================================

Data Type Data Input
-------------- ---
C (Character) All OEM code page characters.
D (Date) Numbers and a character to separate month, day, and year
 (stored internally as 8 digits in YYYYMMDD format).
N (Numeric) - . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Binary, Memo, and OLE Fields And .DBT Files
===

Memo fields store data in .DBT files consisting of blocks numbered
 sequentially (0, 1, 2, and so on). The size of these blocks are internally
 set to 512 bytes. The first block in the .DBT file, block 0, is the .DBT
 file header.

Memo field of each record in the .DBF file contains the number of the
 block (in OEM code page values) where the field's data actually begins. If
 a field contains no data, the .DBF file contains blanks (20h) rather than
 a number.

When data is changed in a field, the block numbers may also change and the
 number in the .DBF may be changed to reflect the new location.

This information is from the Using dBASE III PLUS manual, Appendix C.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 49

**
The data file header structure for dBASE IV 2.0 table file.
**

File Structure:
===============

Byte Contents Meaning
------- ---------- ---
0 1byte Valid dBASE IV file; bits 0-2 indicate version
 number, bit 3 the presence of a dBASE IV memo
 file, bits 4-6 the presence of an SQL table, bit
 7 the presence of any memo file (either dBASE III
 PLUS or dBASE IV).
1-3 3 bytes Date of last update; formattted as YYMMDD.
4-7 32-bit number Number of records in the file.
8-9 16-bit number Number of bytes in the header.
10-11 16-bit number Number of bytes in the record.
12-13 2 bytes Reserved; fill with 0.
14 1 byte Flag indicating incomplete transaction.
15 1 byte Encryption flag.
16-27 12 bytes Reserved for dBASE IV in a multi-user environment.
28 1 bytes Production MDX file flag; 01H if there is an MDX,
 00H if not.
29 1 byte Language driver ID.
30-31 2 bytes Reserved; fill with 0.
32-n* 32 bytes each Field descriptor array (see below).
n + 1 1 byte 0DH as the field terminator.

* n is the last byte in the field descriptor array. The size of the array
 depends on the number of fields in the database file.

The field descriptor array:
===========================

Byte Contents Meaning
------- ------------ --
0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (C, D, F, L, M, or N).
12-15 4 bytes Reserved.
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved.
20 1 byte Work area ID.
21-30 10 bytes Reserved.
31 1 byte Production MDX field flag; 01H if field has an
 index tag in the production MDX file, 00H if not.

Database records:
=================

The records follow the header in the database file. Data records are
 preceded by one byte; that is, a space (20H) if the record is not deleted,
 an asterisk (2AH) if the record is deleted. Fields are packed into
 records without field separators or record terminators. The end of the
 file is marked by a single byte, with the end-of-file marker an ASCII 26
 (1AH) character.

Allowable Input for dBASE Data Types:
====================================

Data Type Data Input
---- ---------- ---
C (Character) All OEM code page characters.
D (Date) Numbers and a character to separate month, day, and
 year (stored internally as 8 digits in YYYYMMDD
 format).
F (Floating - . 0 1 2 3 4 5 6 7 8 9
 point binary
 numeric)
N (Binary - . 0 1 2 3 4 5 6 7 8 9
 coded decimal

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 50

 numeric)
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Memo Fields And .DBT Files
===

Memo fields store data in .DBT files consisting of blocks numbered sequentially (0, 1, 2,
and so on). SET BLOCKSIZE determines the size of each block. The first block in the .DBT
file, block 0, is the .DBT file header.

Each memo field of each record in the .DBF file contains the number of the
 block (in OEM code page values) where the field's data actually begins. If
 a field contains no data, the .DBF file contains blanks (20h) rather than
 a number.

When data is changed in a field, the block numbers may also change and the
 number in the .DBF may be changed to reflect the new location.

This information is from the dBASE IV Language Reference manual, Appendix
 D.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 51

**
The data file header structure for dBASE 5.0 for DOS table file.
**

The table file header:
======================

Byte Contents Description
----- -------- --
0 1 byte Valid dBASE for Windows table file; bits 0-2 indicate
 version number; bit 3 indicates presence of a dBASE IV
 or dBASE for Windows memo file; bits 4-6 indicate the
 presence of a dBASE IV SQL table; bit 7 indicates the
 presence of any .DBT memo file (either a dBASE III PLUS
 type or a dBASE IV or dBASE for Windows memo file).
1-3 3 bytes Date of last update; in YYMMDD format.
4-7 32-bit Number of records in the table.
 number
8-9 16-bit Number of bytes in the header.
 number
10-11 16-bit Number of bytes in the record.
 number
12-13 2 bytes Reserved; filled with zeros.
14 1 byte Flag indicating incomplete dBASE transaction.
15 1 byte Encryption flag.
16-27 12 bytes Reserved for multi-user processing.
28 1 byte Production MDX flag; 01h stored in this byte if a prod-
 uction .MDX file exists for this table; 00h if no .MDX
 file exists.
29 1 byte Language driver ID.
30-31 2 bytes Reserved; filled with zeros.
32-n 32 bytes Field descriptor array (the structure of this array is
 each shown below)
n+1 1 byte 0Dh stored as the field terminator.

n above is the last byte in the field descriptor array. The size of the
 array depends on the number of fields in the table file.

Table Field Descriptor Bytes
============================

Byte Contents Description
----- -------- --
0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (B, C, D, F, G, L, M, or N).
12-15 4 bytes Reserved.
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved.
20 1 byte Work area ID.
21-30 10 bytes Reserved.
31 1 byte Production .MDX field flag; 01h if field has an index
 tag in the production .MDX file; 00h if the field is not
 indexed.

Table Records
=============

The records follow the header in the table file. Data records are preceded
 by one byte, that is, a space (20h) if the record is not deleted, an
 asterisk (2Ah) if the record is deleted. Fields are packed into records
 without field separators orrecord terminators. The end of the file is
 marked by a single byte, with the end-of-file marker, an OEM code page
 character value of 26 (1Ah). You can input OEM code page data as indicated
 below.

Allowable Input for dBASE Data Types
====================================

Data Type Data Input
-------------- ---
C (Character) All OEM code page characters.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 52

D (Date) Numbers and a character to separate month, day, and year
 (stored internally as 8 digits in YYYYMMDD format).
F (Floating - . 0 1 2 3 4 5 6 7 8 9
 point binary
 numeric)
N (Numeric) - . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Memo Fields And .DBT Files
===

Memo fields store data in .DBT files consisting of blocks numbered
 sequentially (0, 1, 2, and so on). SET BLOCKSIZE determines the size of
 each block. The first block in the .DBT file, block 0, is the .DBT file
 header.

Each memo field of each record in the .DBF file contains the number of the
 block (in OEM code page values) where the field's data actually begins. If
 a field contains no data, the .DBF file contains blanks (20h) rather than
 a number.

When data is changed in a field, the block numbers may also change and the
 number in the .DBF may be changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field, dBASE 5.0 for
 DOS may reuse the space from the deleted text when you input new text.
 dBASE III PLUS always appends new text to the end of the .DBT file. In
 dBASE III PLUS, the .DBT file size grows whenever new text is added, even
 if other text in the file is deleted.

This information is from the dBASE for DOS Language Reference manual,
 Appendix C.

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 53

**
The data file header structure for dBASE 5.0 for Windows table file.
**

The table file header:
======================

Byte Contents Description
----- -------- --
0 1 byte Valid dBASE for Windows table file; bits 0-2 indicate
 version number; bit 3 indicates presence of a dBASE IV
 or dBASE for Windows memo file; bits 4-6 indicate the
 presence of a dBASE IV SQL table; bit 7 indicates the
 presence of any .DBT memo file (either a dBASE III PLUS
 type or a dBASE IV or dBASE for Windows memo file).
1-3 3 bytes Date of last update; in YYMMDD format.
4-7 32-bit Number of records in the table.
 number
8-9 16-bit Number of bytes in the header.
 number
10-11 16-bit Number of bytes in the record.
 number
12-13 2 bytes Reserved; filled with zeros.
14 1 byte Flag indicating incomplete dBASE IV transaction.
15 1 byte dBASE IV encryption flag.
16-27 12 bytes Reserved for multi-user processing.
28 1 byte Production MDX flag; 01h stored in this byte if a prod-
 uction .MDX file exists for this table; 00h if no .MDX
 file exists.
29 1 byte Language driver ID.
30-31 2 bytes Reserved; filled with zeros.
32-n 32 bytes Field descriptor array (the structure of this array is
 each shown below)
n+1 1 byte 0Dh stored as the field terminator.

n above is the last byte in the field descriptor array. The size of the array depends on
the number of fields in the table file.

Table Field Descriptor Bytes
============================

Byte Contents Description
----- -------- --
0-10 11 bytes Field name in ASCII (zero-filled).
11 1 byte Field type in ASCII (B, C, D, F, G, L, M, or N).
12-15 4 bytes Reserved.
16 1 byte Field length in binary.
17 1 byte Field decimal count in binary.
18-19 2 bytes Reserved.
20 1 byte Work area ID.
21-30 10 bytes Reserved.
31 1 byte Production .MDX field flag; 01h if field has an index
 tag in the production .MDX file; 00h if the field is not
 indexed.

Table Records
=============

The records follow the header in the table file. Data records are preceded
 by one byte, that is, a space (20h) if the record is not deleted, an
 asterisk (2Ah) if the record is deleted. Fields are packed into records
 without field separators orrecord terminators. The end of the file is
 marked by a single byte, with the end-of-file marker, an OEM code page
 character value of 26 (1Ah). You can input OEM code page data as indicated
 below.

Allowable Input for dBASE Data Types
====================================

Data Type Data Input
-------------- ---
B (Binary) All OEM code page characters (stored internally as 10

Version 1.1 Federal Reserve
10 January 1997 Common Output Format

Page 54

 digits representing a .DBT block number).
C (Character) All OEM code page characters.
D (Date) Numbers and a character to separate month, day, and year
 (stored internally as 8 digits in YYYYMMDD format).
G (General All OEM code page characters (stored internally as 10
 digits or OLE) representing a .DBT block number).
N (Numeric) - . 0 1 2 3 4 5 6 7 8 9
L (Logical) ? Y y N n T t F f (? when not initialized).
M (Memo) All OEM code page characters (stored internally as 10
 digits representing a .DBT block number).

Binary, Memo, and OLE Fields And .DBT Files
===

Binary, memo, and OLE fields store data in .DBT files consisting of blocks
 numbered sequentially (0, 1, 2, and so on). SET BLOCKSIZE determines the
 size of each block. The first block in the .DBT file, block 0, is the .DBT
 file header.

Each binary, memo, or OLE field of each record in the .DBF file contains the number of the
block (in OEM code page values) where the field's data
 actually begins. If a field contains no data, the .DBF file contains
 blanks (20h) rather than a number.

When data is changed in a field, the block numbers may also change and the
 number in the .DBF may be changed to reflect the new location.

Unlike dBASE III PLUS, if you delete text in a memo field (or binary and
 OLE fields), dBASE for Windows (unlike dBASE IV) may reuse the space from
 the deleted text when you input new text. dBASE III PLUS always appends
 new text to the end of the .DBT file. In dBASE III PLUS, the .DBT file
 size grows whenever new text is added, even if other text in the file is
 deleted.

This information is from the dBASE for Windows Language Reference manual,
 Appendix C.

